Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O.
Докажите, что   SAKON + SCLOM = SBKOL + SDNOM.

Вниз   Решение


В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и  a1 > a2 > ... > an).  При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

ВверхВниз   Решение


Автор: Юран А.Ю.

Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

ВверхВниз   Решение


Докажите, что для любого натурального n выполнено неравенство  (n – 1)n+1(n + 1)n–1 < n2n.

ВверхВниз   Решение


Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?

ВверхВниз   Решение


Докажите, что sin< при 0<x< .

ВверхВниз   Решение


Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

ВверхВниз   Решение


Автор: Храбров А.

Докажите, что     для  x > 0  и натурального n.

ВверхВниз   Решение


Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

ВверхВниз   Решение


Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

ВверхВниз   Решение


Окружность касается одного из катетов равнобедренного прямоугольного треугольника и проходит через вершину противолежащего острого угла. Найдите радиус окружности, если её центр лежит на гипотенузе треугольника, а катет треугольника равен a.

Вверх   Решение

Задача 52790
Темы:    [ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружность касается одного из катетов равнобедренного прямоугольного треугольника и проходит через вершину противолежащего острого угла. Найдите радиус окружности, если её центр лежит на гипотенузе треугольника, а катет треугольника равен a.


Подсказка

Выразите через искомый радиус расстояние от центра окружности до вершин острых углов данного треугольника.


Решение

Пусть данная окружность имеет центр O на гипотенузе AB, касается катета BC в точке K и проходит через вершину A. Обозначим через x радиус этой окружности. Тогда в треугольнике OKB известно, что

$\displaystyle \angle$B = 45oOK = xOB = a$\displaystyle \sqrt{2}$ - x.

Поэтому a$ \sqrt{2}$ - x = x$ \sqrt{2}$. Отсюда находим, что x = a(2 - $ \sqrt{2}$).


Ответ

a(2 - $ \sqrt{2}$).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 455

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .