Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


Вниз   Решение


Докажите, что барицентрические координаты точки X, лежащей внутри треугольника ABC, равны (SBCX : SCAX : SABX).

ВверхВниз   Решение


Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

ВверхВниз   Решение


Найти все рациональные положительные решения уравнения  xy = yx  (x ≠ y).

ВверхВниз   Решение


Имеется неограниченное количество плиток в форме многоугольника M. Будем говорить, что из этих плиток можно сложить паркет, если ими можно покрыть круг сколь угодно большого радиуса так, чтобы не было ни просветов, ни перекрытий.
а) Докажите, что если M — выпуклый n-угольник, где n$ \ge$7, то паркет сложить нельзя.
б) Приведите пример такого выпуклого пятиугольника с попарно непараллельными сторонами, что паркет сложить можно.

ВверхВниз   Решение


Автор: Храбров А.

Числа a, b, c и d таковы, что  a² + b² + c² + d² = 4.  Докажите, что  (2 + a)(2 + b) ≥ cd.

ВверхВниз   Решение


В классе 33 ученика, всем вместе 430 лет.
Докажите, что если выбрать 20 самых старших из них, то им вместе будет не меньше, чем 260 лет. (Возраст любого ученика – целое число.)

ВверхВниз   Решение


Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.

ВверхВниз   Решение


Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

ВверхВниз   Решение


Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

ВверхВниз   Решение


Внутри треугольника ABC взята точка M, причём

$\displaystyle \angle$AMC = 60o + $\displaystyle \angle$ABC$\displaystyle \angle$CMB = 60o + $\displaystyle \angle$CAB$\displaystyle \angle$BMA = 60o + $\displaystyle \angle$BCA.

Докажите, что проекции точки M на стороны треугольника служат вершинами правильного треугольника.

Вверх   Решение

Задача 52864
Темы:    [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Внутри треугольника ABC взята точка M, причём

$\displaystyle \angle$AMC = 60o + $\displaystyle \angle$ABC$\displaystyle \angle$CMB = 60o + $\displaystyle \angle$CAB$\displaystyle \angle$BMA = 60o + $\displaystyle \angle$BCA.

Докажите, что проекции точки M на стороны треугольника служат вершинами правильного треугольника.


Подсказка

Точка M, её проекции на две стороны треугольника и вершина треугольника, общая для этих сторон, лежат на одной окружности.


Решение

Пусть A1, B1 и C1 — проекции даннной точки M на стороны BC, AC и AB соответственно. Проведём три окружности: через точки M, A1, B, C1, через точки M, B1, C, A1 и через точки M, C1, A, B1. Тогда

$\displaystyle \angle$B1C1A1 + $\displaystyle \angle$B1A1C1 =

= ($\displaystyle \angle$B1C1M + $\displaystyle \angle$A1C1M) + ($\displaystyle \angle$C1A1M + $\displaystyle \angle$B1A1M) =

= ($\displaystyle \angle$B1AM + $\displaystyle \angle$A1BM) + ($\displaystyle \angle$C1BM + $\displaystyle \angle$B1CM) =

= ($\displaystyle \angle$B1AM + $\displaystyle \angle$B1CM) + ($\displaystyle \angle$A1BM + $\displaystyle \angle$C1BM) =

= 180o - $\displaystyle \angle$AMC + $\displaystyle \angle$ABC =

= 180o - ($\displaystyle \angle$ABC + 60o) + $\displaystyle \angle$ABC = 120o.

Следовательно,

$\displaystyle \angle$C1B1A1 = 180o - ($\displaystyle \angle$B1C1A1 + $\displaystyle \angle$B1A1C1) =

= 180o - 120o = 60o.

Аналогично для остальных углов треугольника A1B1C1.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 531

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .