ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров. Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре? Один мальчик 16 февраля 2003 года сказал: "Разность между числами прожитых мною (полных) месяцев и прожитых (полных) лет сегодня впервые стала равна 111". Когда он родился? Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.) Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём ∠AKB = 90°,
∠CKB = 180° – ∠C. |
Задача 53734
УсловиеВнутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём ∠AKB = 90°,
∠CKB = 180° – ∠C. Решение Продолжим отрезок BK до пересечения со стороной AC в точке M. Тогда ∠MKC = 180° – ∠CKB = ∠C = ∠MCB, поэтому равнобедренные треугольники MKC и MCB подобны. ОтветAM/MC = λ + 1. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке