ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что Докажите, что AP ≥ AI, причём равенство выполняется тогда и только тогда, когда P совпадает с I. Сторона AB треугольника ABC равна c. На стороне AB взята такая точка M, что ∠CMA = φ. На плоскости даны две точки A и B. Найдите
ГМТ M, для которых AM : BM = k (окружность Аполлония).
а) Через точку Лемуана K проведены прямые, параллельные сторонам
треугольника. Докажите, что точки их пересечения со сторонами треугольника
лежат на одной окружности (первая окружность Лемуана)
.
Опустим из точки M перпендикуляры MA1, MB1 и
MC1 на прямые BC, CA и AB. Для фиксированного треугольника ABC
множество точек M, для которых угол Брокара треугольника A1B1C1 имеет
заданное значение, состоит из двух окружностей, причем одна из них расположена
внутри описанной окружности треугольника ABC, а другая вне ее
(окружности Схоуте).
Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел. В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов. Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом. |
Задача 53925
УсловиеНайдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом. Подсказка
Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.
ОтветОкружность с диаметром AB без точек A и B. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке