Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

Вниз   Решение


Сторона AB треугольника ABC равна c. На стороне AB взята такая точка M, что  ∠CMA = φ.
Найдите расстояние между ортоцентрами треугольников AMC и BMC.

ВверхВниз   Решение


На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).

ВверхВниз   Решение


а) Через точку Лемуана K проведены прямые, параллельные сторонам треугольника. Докажите, что точки их пересечения со сторонами треугольника лежат на одной окружности (первая окружность Лемуана) .
б) Через точку Лемуана K проведены прямые, антипараллельные сторонам треугольника. Докажите, что точки их пересечения со сторонами треугольника лежат на одной окружности (вторая окружность Лемуана).

ВверхВниз   Решение


Опустим из точки M перпендикуляры MA1, MB1 и MC1 на прямые BC, CA и AB. Для фиксированного треугольника ABC множество точек M, для которых угол Брокара треугольника A1B1C1 имеет заданное значение, состоит из двух окружностей, причем одна из них расположена внутри описанной окружности треугольника ABC, а другая вне ее (окружности Схоуте).

ВверхВниз   Решение


Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

ВверхВниз   Решение


В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.

ВверхВниз   Решение


Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.

Вверх   Решение

Задача 53925
Тема:    [ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.


Подсказка

Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.


Ответ

Окружность с диаметром AB без точек A и B.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1689

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .