Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?

Вниз   Решение


Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)

ВверхВниз   Решение


Решите задачу 1.67, используя свойства радикальной оси.

ВверхВниз   Решение


Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

Вверх   Решение

Задача 54158
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).


Подсказка

Опустите перпендикуляр из вершины B на AD.


Решение

Пусть Q – основание перпендикуляра, опущенного из вершины B на AD. Из равенства прямоугольных треугольников ABQ и DCP следует, что  AQ = DP,  а так как BCPQ – прямоугольник, то  PQ = BC = b.  Поэтому  DP = ½ (AD – PQ) = ½ (a – b),  AP = AD – DP = a – ½ (a – b) = ½ (a + b).


Ответ

½ (a – b),  ½ (a + b).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1921

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .