ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Окружность с центром O проходит через вершины A и B
треугольника ABC и пересекает сторону AC в точке M и сторону BC в
точке N. Углы AOM и BON равны
60o. Расстояния от точки
N до прямой AB равно 5
Окружность, вписанная в прямоугольный треугольник ABC (∠ABC = 90°), касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0. Дана незамкнутая ломаная ABCD, причём AB = CD, ∠ABC = ∠BCD и точки A и D расположены по одну сторону от прямой BC. Докажите, что AD || BC.
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.
|
Задача 54370
Условие
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.
Подсказка
Четырёхугольник ABCD — ромб и
Решение
Пусть Q — точка пересечения диагоналей AC и BD
параллелограмма ABCD. Вписанный угол AQD опирается на диаметр AD
данной окружности. Поэтому
Пусть
cos
Следовательно,
Ответ
4:5.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке