Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 .

Вниз   Решение


Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности.

ВверхВниз   Решение


Докажите, что если  a + b + c = 0,  то   2(a5 + b5 + c5) = 5abc(a2 + b2 + c2).

ВверхВниз   Решение


Точка D лежит на стороне AB треугольника ABC, точки E и F — на стороне BC этого треугольника, а точка P — на стороне AC. Отрезок AD составляет две трети стороны AB, отрезок BF составляет три пятых стороны BC, отрезок BE составляет одну пятую стороны BC, а точка P делит сторону AC пополам. Найдите отношение площади четырёхугольника DEFP к площади треугольника ABC.

ВверхВниз   Решение


С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны.

ВверхВниз   Решение


Окружность касается двух параллельных прямых и их секущей. Отрезок секущей, заключённый между параллельными прямыми делится точкой касания в отношении  1 : 3.  Под каким углом секущая пересекает каждую из параллельных прямых?

ВверхВниз   Решение


Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

Вверх   Решение

Задача 54378
Темы:    [ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.


Решение

  Пусть O – центр окружности, P – середина AC, Q – середина DE,  ∠ABP = ∠CBP = α.  Тогда  BP = AB cos α = AP = AB sin α =
OP² = AO² – AP² = 1/5BO = BP – OP = BE² = BO² – OE² = 4/5SBOE = ½ BE·BO = .
  Треугольник BEQ подобен треугольнику BOE с коэффициентом  BE/BO = 2/3,  поэтому  SDBE = 2SBEQ = 8/9 SBOE = .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2141

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .