Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC проведена биссектриса прямого угла CL. Из вершины A ( $ \angle$A > 45o) на CL опущен перпендикуляр AD. Найдите площадь треугольника ABC, если AD = a, CL = b.

Вниз   Решение


A', B', C', D', E' — середины сторон выпуклого пятиугольника ABCDE. Доказать, что площади пятиугольников ABCDE и A'B'C'D'E' связаны соотношением:

SA'B'C'D'E'$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$SABCDE.

ВверхВниз   Решение


На сторонах остроугольного треугольника ABC взяты точки A1, B1, C1 так, что отрезки AA1, BB1, CC1 пересекаются в точке H.
Докажите, что  AH·A1H = BH·B1H = CH·C1H  тогда и только тогда, когда H – точка пересечения высот треугольника ABC.

ВверхВниз   Решение


Пусть O — центр правильного треугольника ABC, сторона которого равна 10. Точка K делит медиану BM треугольника BOC в отношении 3:1, считая от точки B. Что больше: BO или BK?

ВверхВниз   Решение


В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок.

ВверхВниз   Решение


С помощью одной линейки опустите перпендикуляр из данной точки на прямую, содержащую данный диаметр данной окружности, если точка не лежит ни на окружности, ни на данной прямой.

ВверхВниз   Решение


Постройте треугольник ABC, зная положение центров A1, B1 и C1 его вневписанных окружностей.

ВверхВниз   Решение


В городе Никитовка двустороннее движение. В течение двух лет в городе проходил ремонт всех дорог. Вследствие этого в первый год на некоторых дорогах было введено одностороннее движение. На следующий год на этих дорогах было восстановлено двустороннее движение, а на остальных дорогах введено одностороннее движение. Известно, что в каждый момент ремонта можно было проехать из любой точки города в любую другую. Доказать, что в Никитовке можно ввести одностороннее движение так, что из каждой точки города удастся проехать в любую другую точку.

ВверхВниз   Решение


В треугольнике ABC проведена высота AH; O — центр описанной окружности. Докажите, что $ \angle$OAH = |$ \angle$B - $ \angle$C|.

ВверхВниз   Решение


В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?

ВверхВниз   Решение


Площадь треугольника ABC равна 15$ \sqrt{3}$. Угол BAC равен 120o. Угол ABC больше угла ACB. Расстояние от вершины A до центра окружности, вписанной в треугольник ABC, равно 2. Найдите медиану треугольника ABC, проведённую из вершины B.

ВверхВниз   Решение


На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.

Вверх   Решение

Задача 54483
Темы:    [ Теорема Пифагора (прямая и обратная) ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.


Подсказка

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2247

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .