Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
При каких m и n она сможет переместиться в соседнюю справа клетку?

Вниз   Решение


Пусть  x1, x2,..., xn  – корни уравнения  anxn + ... + a1x + a0 = 0.  Какие корни будут у уравнений
  а)  a0xn + ... + an–1x + an = 0;
  б)  anx2n + ... + a1x² + a0 = 0?

ВверхВниз   Решение


Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.

ВверхВниз   Решение


Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая первую окружность в точке M1, а вторую в точке M2. Докажите, что  $ \angle$BO1M1 = $ \angle$BO2M2.

ВверхВниз   Решение


Докажите, что все корни уравнения  a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум сторонам и высоте, опущенной на третью.

Вверх   Решение

Задача 54587
Темы:    [ Построение треугольников по различным элементам ]
[ Прямоугольные треугольники ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

С помощью циркуля и линейки постройте треугольник по двум сторонам и высоте, опущенной на третью.


Подсказка

Задача сводится к построению прямоугольного треугольника по катету и гипотенузе.


Решение

Пусть b и c — данные стороны, h — данная высота. Построим два прямоугольных треугольника с общим катетом h и гипотенузами b и c так, чтобы вершины их прямых углов совпадали.

Задача имеет два решения, т.к. гипотенузы могут быть расположены либо по одну сторону от общего катета, либо по разные.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2482

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .