Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что если стороны a, b и противолежащие им углы α и β треугольника связаны соотношением  a/cos α = b/cos β,  то треугольник – равнобедренный.

Вниз   Решение


Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


Постройте четырехугольник по углам и диагоналям.

ВверхВниз   Решение


Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что  X + Y = 10200.  Доказать, что X делится на 50.

ВверхВниз   Решение


а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

ВверхВниз   Решение


Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

ВверхВниз   Решение


a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


ВверхВниз   Решение


Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

ВверхВниз   Решение


Докажите следующий вариант формулы Бине:  

ВверхВниз   Решение


Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

ВверхВниз   Решение


Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.

Вверх   Решение

Задача 54691
Тема:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.


Подсказка

Примените теорему о касательной и секущей. Рассмотрите два случая.


Решение

Ясно, что точка B расположена между точками A и C. Предположим, что точка D расположена между точками A и E. Тогда

AB . AC = AD . AE, или 14 . 7 = 10(10 + DE).

Отсюда находим, что DE = - 0, 2, что невозможно. Поэтому точка E расположена между A и D. Тогда

AB . AC = AD . AE, или 14 . 7 = 10(10 - DE).

Отсюда находим, что DE = 0, 2.


Ответ

0,2.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2637

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .