Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Окружность с центром O проходит через вершины A и B треугольника ABC и пересекает сторону AC в точке M и сторону BC в точке N. Углы AOM и BON равны 60o. Расстояния от точки N до прямой AB равно 5$ \sqrt{3}$. Отрезок MN в четыре раза меньше отрезка AB. Найдите площадь треугольника ABC.

Вниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC  (∠ABC = 90°),  касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.

ВверхВниз   Решение


Дана незамкнутая ломаная ABCD, причём  AB = CD,  ∠ABC = ∠BCD  и точки A и D расположены по одну сторону от прямой BC. Докажите, что  AD || BC.

ВверхВниз   Решение


Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.

ВверхВниз   Решение


В трапеции ABCD диагонали пересекаются под прямым углом, а одно основание в два раза больше другого. Отношение боковых сторон трапеции равно m. Найдите боковые сторон трапеции, если сумма квадратов диагоналей равна d2.

ВверхВниз   Решение


Две окружности пересекаются в точках K и L. Их центры расположены по одну сторону от прямой, содержащей отрезок KL. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что  AL = 3,  BL = 6,  а  tg∠AKB = – ½.  Найдите площадь треугольника AKB.

ВверхВниз   Решение


Через точку O, взятую на стороне правильного треугольника ABC, проведены прямые, параллельные сторонам AB и AC, и пересекающие стороны AC и AB в точках K и L соответственно. Окружность, проходящая через точки O, K и L пересекает стороны AC и AB соответственно в точках Q и P, отличных от K и L. Докажите, что треугольник OPQ — равносторонний.

ВверхВниз   Решение


Окружности с центрами O1 и O2 имеют общую хорду AB, $ \angle$AO1B = 60o. Отношение длины первой окружности к длине второй равно $ \sqrt{2}$. Найдите угол AO2B.

Вверх   Решение

Задача 54917
Темы:    [ Теорема Пифагора (прямая и обратная) ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружности с центрами O1 и O2 имеют общую хорду AB, $ \angle$AO1B = 60o. Отношение длины первой окружности к длине второй равно $ \sqrt{2}$. Найдите угол AO2B.


Подсказка

Выразите через радиус меньшей окружности стороны треугольника AO2B.


Решение

Пусть R и r — радиусы окружностей с центрами O1 и O2 соответственно. По условию

$\displaystyle {\frac{2\pi R}{2\pi r}}$ = $\displaystyle {\frac{R}{r}}$ = $\displaystyle \sqrt{2}$.

Поэтому R = r$ \sqrt{2}$. Треугольник AO1B — равносторонний, поэтому

AB = O1A = R = r$\displaystyle \sqrt{2}$.

Боковые стороны равнобедренного треугольника AO2B равны r, а основание AB = r$ \sqrt{2}$. Тогда

O2A2 + O2B2 = r2 + r2 = 2r2 = AB2.

Следовательно, треугольник AO2B — прямоугольный и $ \angle$AO2B = 90o.


Ответ

90o.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2861

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .