Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?

Вниз   Решение


Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)

ВверхВниз   Решение


Решите задачу 1.67, используя свойства радикальной оси.

ВверхВниз   Решение


Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

ВверхВниз   Решение


Вершины K и N треугольника KMN перемещаются по сторонам соответственно AB и AC угла BAC, а стороны треугольника KMN соответственно параллельны трём данным прямым. Найдите геометрическое место вершин M.

Вверх   Решение

Задача 55778
Темы:    [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Вершины K и N треугольника KMN перемещаются по сторонам соответственно AB и AC угла BAC, а стороны треугольника KMN соответственно параллельны трём данным прямым. Найдите геометрическое место вершин M.


Подсказка

Примените гомотетию.


Решение

Пусть KMN и K1M1N1 — два таких треугольника. Их стороны соответственно параллельны. При гомотетии с центром в точке A, переводящей вершину K в вершину K1, точка N перейдёт в точку N1, прямая KM — в параллельную ей прямую K1M1, а прямая NM — в параллельную ей прямую N1M1. Поэтому точка M пересечения прямых KM и NM перейдёт в точку пересечения их образов, т.е. в точку M1. Следовательно, точка M1 лежит на луче AM.

Ясно также, что любая точка X луча AM является вершиной некоторого треугольника, удовлетворяющего условию задачи.


Ответ

Луч с началом в точке A.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6421

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .