Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата.

Вниз   Решение


Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.

ВверхВниз   Решение


Клайв прокрутил минутную стрелку, так же как в задаче 32796.)
  а) Сколько раз за это время минутная стрелка совпала с часовой?
  б) В какие моменты это происходило?

ВверхВниз   Решение


Автор: Столов Е.

Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше  – 1/n.

ВверхВниз   Решение


Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала?

ВверхВниз   Решение


Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом  — мак, а в третьем  — ещё не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: "Мак", "Просо" и "Смесь". Мачеха вернулась с бала первой и нарочно поменяла местами все таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зёрнышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала?

ВверхВниз   Решение


Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться?

ВверхВниз   Решение


а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.

Вверх   Решение

Задача 56472
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 2+
Классы: 9
Из корзины
Прислать комментарий

Условие

а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.


Решение

  а) Первый способ. Докажем утверждение для биссектрисы внутреннего угла. Проведём через точку C прямую, параллельную BD, до пересечения с прямой AB в точке E. Так как  ∠BEC = ∠ABD = ∠CBD = ∠BCE,  то треугольник CBE – равнобедренный  (BC = BE).  По теореме Фалеса
AD : DC = AB : BE = AB : BC.

  Для биссектрисы внешнего угла доказательство аналогично.

  Второй способ. Точка равноудалена D от прямых AB и BC. Поэтому  AD : DC = SABD : SBCD = AB : BC.

  б) Из а) следует, что   BA1 = ac/b+c.  Так как BO – биссектриса треугольника ABA1, то  AO : OA1 = AB : BA1 = (b + c) : a.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 2
Название Отношение сторон подобных треугольников
Тема Отношения линейных элементов подобных треугольников
задача
Номер 01.017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .