ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что
Две окружности пересекаются в точках P и Q.
Через точку A первой окружности проведены прямые AP
и AQ, пересекающие вторую окружность в точках B и C.
Докажите, что касательная в точке A к первой окружности
параллельна прямой BC.
Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120. Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2.
C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.
Какие остатки могут получиться при делении n³ + 3 на n + 1 при натуральном n > 2? Чему равна площадь треугольника со сторонами 18, 17, 35? Существует ли целое число, произведение цифр которого равно а) 1980? б) 1990? в) 2000? Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB. Докажите, что из точки A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от A до точек
касания) равны.
|
Задача 56653
УсловиеДокажите, что из точки A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от A до точек
касания) равны.
РешениеПусть $O$ – центр данной окружности. Касательная перпендикулярна радиусу, проведённому к точке касания, значит, точка касания лежит на окружности, построенной на $OA$ как на диаметре. Поскольку такая окружность проходит через $O$, она пересекает данную окружность в двух точках; совокупность двух окружностей симметрична относительно их линии центров, значит, при симметрии одна касательная перейдёт во вторую (и наоборот) следовательно, длины отрезков таких касательных равны. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке