Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Вниз   Решение


Ладья стоит на поле a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8.

ВверхВниз   Решение


Боковое ребро правильной четырёхугольной пирамиды равно b , а плоский угол при вершине равен α . Найдите длину кратчайшего замкнутого пути по поверхности пирамиды, начинающегося и заканчивающегося в вершине основания и пересекающего все боковые рёбра пирамиды.

ВверхВниз   Решение


В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт.
Докажите, что и теперь от каждого города можно добраться до любого другого.

ВверхВниз   Решение


Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

ВверхВниз   Решение


Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?

ВверхВниз   Решение


Докажите, что при  n > 2  числа  2n – 1  и  2n + 1  не могут быть простыми одновременно.

ВверхВниз   Решение


Пусть  {pn} – последовательность простых чисел  (p1 = 2,  p2 = 3,  p3 = 5, ...).
  а) Докажите, что  pn > 2n  при  n ≥ 5.
  б) При каких n будет выполняться неравенство  pn > 3n?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA1, BB1 и CC1. Биссектрисы AA1 и CC1 пересекают отрезки C1B1 и B1A1 в точках M и N. Докажите, что  $ \angle$MBB1 = $ \angle$NBB1.

ВверхВниз   Решение


На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

ВверхВниз   Решение


Четыре прямые задают четыре треугольника. Докажите, что ортоцентры этих треугольников лежат на одной прямой.

Вверх   Решение

Задача 57044
Тема:    [ Четырехугольники (прочее) ]
Сложность: 6+
Классы: 9
Из корзины
Прислать комментарий

Условие

Четыре прямые задают четыре треугольника. Докажите, что ортоцентры этих треугольников лежат на одной прямой.

Решение

Достаточно проверить, что ортоцентры любых трех из данных четырех треугольников лежат на одной прямой. Пусть некоторая прямая пересекает прямые  B1C1, C1A1 и A1B1 в точках A, B и C соответственно; A2, B2 и C2 — ортоцентры треугольников  A1BC, AB1C и ABC1. Прямые AB2 и A2B перпендикулярны прямой A1B1, поэтому они параллельны. Аналогично  BC2| B2C и  CA2| C2A. Точки A, B и C лежат на одной прямой, поэтому точки A2, B2 и C2 тоже лежат на одной прямой (см. задачу 1.12, б)).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 2
Название Четырехугольники
Тема Четырехугольники (прочее)
задача
Номер 06.033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .