Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Длины сторон треугольника ABC равны a, b и c  (AB = c,  BC = a,  CA = b  и  a < b < c).  На лучах BC и AC отмечены соответственно такие точки B1 и A1, что  BB1 = AA1 = c.  На лучах CA и BA отмечены соответственно такие точки C2 и B2, что  CC2 = BB2 = a.  Найти  A1B1 : C2B2.

Вниз   Решение


В треугольнике ABC  ∠A = 45°,  BH – высота, точка K лежит на стороне AC, причём  BC = CK.
Докажите, что центр описанной окружности треугольника ABK совпадает с центром вневписанной окружности треугольника BCH.

ВверхВниз   Решение


Найдите ближайшее целое число к числу x, если  x = .

ВверхВниз   Решение


Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

ВверхВниз   Решение


Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.

ВверхВниз   Решение


Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).

ВверхВниз   Решение


Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.

ВверхВниз   Решение


У игрока в преферанс оказалось 4 козыря, а еще 4 находятся на руках у двух его противников. Какова вероятность того, что козыри лягут а) 2 : 2; б) 3 : 1; в) 4 : 0?

ВверхВниз   Решение


Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

Вверх   Решение

Задача 57049
Тема:    [ Теорема Птолемея ]
Сложность: 5
Классы: 9
Из корзины
Прислать комментарий

Условие

Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

Решение

Пусть P — вторая точка пересечения отрезка CC1 с вписанной окружностью. Тогда $ \angle$AB1C1 = $ \angle$B1PC1, поэтому $ \triangle$CPB1 $ \sim$ $ \triangle$CB1C1, а значит, PB1/B1C1 = CP/CB1. Аналогично доказывается, что CP/CA1 = PA1/A1C1. Учитывая, что CA1 = CB1, получаем PB1 . A1C1 = PA1 . B1C1.
По теореме Птолемея PB1 . A1C1 + PA1 . B1C1 = PC1 . A1B1, т.е. 2PB1 . A1C1 = 2PC1 . QA1. Ясно также, что $ \angle$B1PC1 = $ \angle$QA1C1. Поэтому $ \triangle$B1PC1 $ \sim$ $ \triangle$QA1C1, а значит, $ \angle$BC1P = $ \angle$QC1A1.
Замечание. Утверждение задачи можно переформулировать следующим образом: точка Жергонна треугольника ABC совпадает с точкой Лемуана треугольника A1B1C1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 3
Название Теорема Птолемея
Тема Теорема Птолемея
задача
Номер 06.040B

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .