Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

На конференции присутствовали представители двух конкурирующих фирм “Индекс” и “Зугл” Алексей, Борис и Владимир. Представители одной и той же компании всегда говорят правду друг другу и врут конкурентам. Алексей сказал Борису: «Я из фирмы “Индекс”». Борис ответил: «О! Вы с Владимиром работаете в одной фирме!». Можно ли по этому диалогу определить, где работает Владимир?

Вниз   Решение


Даны две точки A и B. Найдите геометрическое место таких точек C, что точки A, B и C можно накрыть кругом единичного радиуса.

ВверхВниз   Решение


Внутри выпуклого четырехугольника с суммой длин диагоналей d расположен выпуклый четырехугольник с суммой длин диагоналей d'. Докажите, что d' < 2d.

ВверхВниз   Решение


  Этот метод позволяет решать произвольное уравнение 4-й степени путем сведения его к решению вспомогательного кубического уравнения и двух квадратных уравнений.
  а) Докажите, что любое уравнение 4-й степени можно привести к виду  x4 = Ax² + Bx + C.     (*)
  б) Введём действительный параметр α и перепишем уравнение (*) в виде  x4 + 2αx² + α² = (A + 2α)x² + Bx + (C + α²).     (**)
    Докажите, что для некоторого  α > – A/2  правая часть равенства (**) превращается в полный квадрат.
  в) Пользуясь равенством (**), опишите метод нахождения корней уравнения (*).

ВверхВниз   Решение


Решите задачу 13.44, используя свойства центра масс.

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .

ВверхВниз   Решение


Задан числовой массив А [1:m, 1:n]. Некоторый элемент этого массива назовем седловой точкой, если он является одновременно наименьшим в своей строке и наибольшим в своем столбце. Напечатать номера строки и столбца какой-нибудь седловой точки и напечатать число 0, если такой точки нет .

ВверхВниз   Решение


Докажите, что при простых  pi ≥ 5,  i = 1, 2, ..., 24,  число    делится нацело на 24.

ВверхВниз   Решение


В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

ВверхВниз   Решение


На плоскости отметили n  (n > 2)  прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

ВверхВниз   Решение


Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

ВверхВниз   Решение


Внутри треугольника ABC взята точка M. Докажите, что  4S $ \leq$ AM . BC + BM . AC + CM . AB, где S — площадь треугольника ABC.

Вверх   Решение

Задача 57338
Тема:    [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 4
Классы: 9
Из корзины
Прислать комментарий

Условие

Внутри треугольника ABC взята точка M. Докажите, что  4S $ \leq$ AM . BC + BM . AC + CM . AB, где S — площадь треугольника ABC.

Решение

Опустим из точек B и C перпендикуляры BB1 и CC1 на прямую AM. Тогда  2SAMB + 2SAMC = AM . BB1 + AM . CC1 $ \leq$ AM . BC, так как  BB1 + CC1 $ \leq$ BC. Аналогично  2SBMC + 2SBMA $ \leq$ BM . AC и  2SCMA + 2SCMB $ \leq$ CM . AB. Складывая эти неравенства, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 5
Название Площадь треугольника не превосходит половины произведения двух сторон
Тема Площадь треугольника не превосходит половины произведения двух сторон
задача
Номер 09.033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .