ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?
На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.
В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?
Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 |
Задача 57464
УсловиеДокажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 РешениеПусть x = p - a, y = p - b, z = p - c. Тогда (a2 - (b - c)2) + (b2 - (a - c)2) + (c2 - (a - b)2) = 4(p - b)(p - c) + 4(p - a)(p - c) + 4(p - a)(p - b) = 4(yz + zx + xy) и
4
Итак, нужно доказать неравенство
xy + yz + zx
x2y2 + y2z2 + z2x2
Складывая неравенства
x2yz Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке