Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

Вниз   Решение


Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

ВверхВниз   Решение


С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.

ВверхВниз   Решение


На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?

ВверхВниз   Решение


На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.

ВверхВниз   Решение


В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?

ВверхВниз   Решение


Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.

Вверх   Решение

Задача 57464
Тема:    [ Неравенства для площади треугольника ]
Сложность: 5
Классы: 9
Из корзины
Прислать комментарий

Условие

Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.

Решение

Пусть  x = p - a, y = p - b, z = p - c. Тогда  (a2 - (b - c)2) + (b2 - (a - c)2) + (c2 - (a - b)2) = 4(p - b)(p - c) + 4(p - a)(p - c) + 4(p - a)(p - b) = 4(yz + zx + xy) и

4$\displaystyle \sqrt{3}$S = 4$\displaystyle \sqrt{3p(p-a)(p-b)(p-c)}$ = 4$\displaystyle \sqrt{3(x+y+z)xyz}$.

Итак, нужно доказать неравенство  xy + yz + zx $ \geq$ $ \sqrt{3(x+y+z)xyz}$. После возведения в квадрат и сокращения получаем

x2y2 + y2z2 + z2x2 $\displaystyle \geq$ x2yz + y2xz + z2xy.

Складывая неравенства  x2yz $ \leq$ x2(y2 + z2)/2, y2xz $ \leq$ y2(x2 + z2)/2 и  z2xy $ \leq$ z2(x2+y2)/2, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 8
Название Неравенства для площади треугольника
Тема Неравенства для площади треугольника
задача
Номер 10.054

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .