Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.

Вниз   Решение


Найдите объём правильного октаэдра (правильного восьмигранника), ребро которого равно a .

ВверхВниз   Решение


а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) $ \geq$ 3$ \sqrt{3}$.
б) Для остроугольного треугольника

tg$\displaystyle \alpha$ + tg$\displaystyle \beta$ + tg$\displaystyle \gamma$ $\displaystyle \geq$ 3$\displaystyle \sqrt{3}$.


ВверхВниз   Решение


Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

ВверхВниз   Решение


Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

ВверхВниз   Решение


В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, не обязательно положительное. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)

ВверхВниз   Решение


Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

ВверхВниз   Решение


На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

ВверхВниз   Решение


а) Пусть A, B, C и D — произвольные точки плоскости. Докажите, что ($ \overrightarrow{AB}$,$ \overrightarrow{CD}$) + ($ \overrightarrow{BC}$,$ \overrightarrow{AD}$) + ($ \overrightarrow{CA}$,$ \overrightarrow{BD}$) = 0.
б) Докажите, что высоты треугольника пересекаются в одной точке.

Вверх   Решение

Задача 57692
Тема:    [ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9
Из корзины
Прислать комментарий

Условие

а) Пусть A, B, C и D — произвольные точки плоскости. Докажите, что ($ \overrightarrow{AB}$,$ \overrightarrow{CD}$) + ($ \overrightarrow{BC}$,$ \overrightarrow{AD}$) + ($ \overrightarrow{CA}$,$ \overrightarrow{BD}$) = 0.
б) Докажите, что высоты треугольника пересекаются в одной точке.

Решение

а) Выразим все входящие в указанную формулу векторы через $ \overrightarrow{AB}$, $ \overrightarrow{BC}$ и  $ \overrightarrow{CD}$, т. е. запишем $ \overrightarrow{AD}$ = $ \overrightarrow{AB}$ + $ \overrightarrow{BC}$ + $ \overrightarrow{CD}$, $ \overrightarrow{CA}$ = - $ \overrightarrow{AB}$ - $ \overrightarrow{BC}$ и  $ \overrightarrow{BD}$ = $ \overrightarrow{BC}$ + $ \overrightarrow{CD}$. После сокращения получим требуемое.
б) Пусть D — точка пересечения высот, проведенных из вершин A и C треугольника ABC. Тогда в доказанной в задаче а) формуле первые два слагаемых нулевые, поэтому последнее слагаемое тоже нулевое, т. е. BD $ \perp$ AC.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 13
Название Векторы
Тема Векторы
параграф
Номер 2
Название Скалярное произведение. Соотношения
Тема Скалярное произведение. Соотношения
задача
Номер 13.012

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .