Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Из 16 плиток размером 1×3 и одной плитки 1×1 сложили квадрат со стороной 7. Докажите, что плитка 1×1 лежит в центре квадрата или примыкает к его границе.

Вниз   Решение


Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

ВверхВниз   Решение


Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

ВверхВниз   Решение


Докажите, что  la $ \leq$ $ \sqrt{p(p-a)}$.

ВверхВниз   Решение


В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.

ВверхВниз   Решение


На плоскости дана окружность и не пересекающая ее прямая. Докажите, что существует проективное преобразование, переводящее данную окружность в окружность, а данную прямую — в бесконечно удаленную прямую.

ВверхВниз   Решение


Докажите, что  ra + rb + rc = 4R + r.

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.

ВверхВниз   Решение


Докажите, что для любого нечетного n$ \ge$3 на плоскости можно указать 2n различных точек, не лежащих на одной прямой, и разбить их на пары так, чтобы любая прямая, проходящая через две точки из разных пар, проходила бы еще через одну из этих 2n точек.

ВверхВниз   Решение


Постройте треугольник ABC по стороне c, высоте hc и разности углов A и B.

ВверхВниз   Решение


Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.

ВверхВниз   Решение


Многоугольник разрезан на несколько многоугольников. Пусть p — количество полученных многоугольников, q — количество отрезков, являющихся их сторонами, r — количество точек, являющихся их вершинами. Докажите, что p - q + r = 1.

Вверх   Решение

Задача 58174
Тема:    [ Эйлерова характеристика ]
Сложность: 5
Классы: 8,9
Название задачи: Формула Эйлера.
Из корзины
Прислать комментарий

Условие

Многоугольник разрезан на несколько многоугольников. Пусть p — количество полученных многоугольников, q — количество отрезков, являющихся их сторонами, r — количество точек, являющихся их вершинами. Докажите, что p - q + r = 1.

Решение

Пусть n — количество вершин исходного многоугольника, n1,..., np — количества вершин полученных многоугольников (к вершинам данного многоугольника мы относим и все вершины других многоугольников, лежащие на его сторонах). Представим число r в виде r = n + r1 + r2, где r1 и r2 -- количества вершин полученных многоугольников, лежащих на сторонах исходного многоугольника и внутри его. С одной стороны, сумма углов всех полученных многоугольников равна $ \sum\limits_{i=1}^{p}$(ni - 2)$ \pi$ = $ \sum\limits_{i=1}^{p}$ni$ \pi$ - 2p$ \pi$. С другой стороны, она равна (n - 2)$ \pi$ + r1$ \pi$ + 2r2$ \pi$. Остается заметить, что $ \sum\limits_{i=1}^{p}$ni = 2(q - n - r1) + n + r1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 3
Название Инварианты
Тема Инварианты
задача
Номер 23.015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .