Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак?

Вниз   Решение


Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

ВверхВниз   Решение


Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

ВверхВниз   Решение


Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии.

ВверхВниз   Решение


Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

ВверхВниз   Решение


На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

ВверхВниз   Решение


Докажите, что если для чисел a, b и c выполняются неравенства | a - b|$ \ge$| c|, | b - c|$ \ge$| a|, | c - a|$ \ge$| b|, то одно из этих чисел равно сумме двух других.

ВверхВниз   Решение


У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки?

ВверхВниз   Решение


а) Докажите, что существует натуральное число, которое при замене любой тройки соседних цифр на произвольную тройку остаётся составным.
б) Существует ли такое 1997-значное число?

ВверхВниз   Решение


Кощей Бессмертный похитил Василису-премудрую у Иванушки-дурачка. Когда Иванушка пришёл к Кощею за невестой, то тот предложил Иванушке узнать свою Василису. В темнице, куда приведут Иванушку, будет и Василиса, и Баба Яга, превратившаяся в Василису так, что не отличишь. Иванушке разрешено задать каждой из них один вопрос: "Ты Василиса?". Иванушка знает, что Баба Яга всегда врёт, но Василиса об этом не знает. Сможет ли Иванушка узнать свою невесту?

ВверхВниз   Решение


Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.

ВверхВниз   Решение


Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

ВверхВниз   Решение


На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?

Вверх   Решение

Задача 60630
Темы:    [ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 7,8
Из корзины
Прислать комментарий

Условие

На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?


Решение 1

При каждой операции количество минусов либо не изменяется, либо уменьшается на 2. Поэтому чётность количества минусов не меняется.


Решение 2

Заменим плюсы на единицы, а минусы на минус единицы. Тогда произведение написанных чисел не меняется. Поскольку изначально оно было отрицательным, то на доске останется –1 (бывший минус).


Ответ

Минус.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 1
Название Четность
Тема Четность и нечетность
задача
Номер 04.004

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .