Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Из 100 членов Совета Двух Племён часть — эльфы, остальные — гномы. Каждый написал два числа: количество эльфов в Совете и количество гномов в Совете. При этом своих соплеменников каждый посчитал верно, а при подсчёте иноплеменников ошибся ровно на 2. В написанных числах одна цифра встретилась не менее 222 раз. Сколько эльфов и сколько гномов могло быть в Совете? Если вариантов несколько — укажите один из них.

Вниз   Решение


В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$.

ВверхВниз   Решение


Пусть точка $M$ – середина катета $AB$ прямоугольного треугольника $ABC$ с прямым углом $A$. На медиане $AN$ треугольника $AMC$ отмечена точка $D$, так что углы $ACD$ и $BCM$ равны. Докажите, что угол $DBC$ также равен этим углам.

ВверхВниз   Решение


Пусть p и q — отличные от нуля действительные числа и p2 - 4q > 0. Докажите, что следующие последовательности сходятся:
а) y0 = 0,        yn + 1 = $ {\dfrac{q}{p-y_n}}$    (n $ \geqslant$ 0);
б) z0 = 0,        zn + 1 = p - $ {\dfrac{q}{z_n}}$    (n $ \geqslant$ 0).
Установите связь между предельными значениями этих последовательностей y*, z* и корнями уравнения x2 - px + q = 0.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

ВверхВниз   Решение


С какой гарантированной точностью вычисляется $ \sqrt{k}$ при помощи алгоритма задачи 9.48 после пяти шагов?

ВверхВниз   Решение


12 монет. Из двенадцати монет одиннадцать настоящих, а одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за три взвешивания на двухчашечных весах без гирь найти фальшивую монету и выяснить, легче она или тяжелее настоящей.

ВверхВниз   Решение


Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.

ВверхВниз   Решение


13 монет. Предположим теперь, что имеется 13 монет, из которых одна — фальшивая. Как за три взвешивания на двухчашечных весах без гирь найти фальшивую монету, если не требуется выяснять, легче она или тяжелее настоящей?

ВверхВниз   Решение


Как и раньше загадывается число от 1 до 200, а загадавший отвечает на вопросы ``да'' или `` нет''. При этом ровно один раз (за все ответы) он имеет право соврать. Сколько теперь понадобится вопросов, чтобы отгадать задуманное число?

Вверх   Решение

Задача 60908
Тема:    [ Теория алгоритмов (прочее) ]
Сложность: 5+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Как и раньше загадывается число от 1 до 200, а загадавший отвечает на вопросы ``да'' или `` нет''. При этом ровно один раз (за все ответы) он имеет право соврать. Сколько теперь понадобится вопросов, чтобы отгадать задуманное число?

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 5
Название Числа, дроби, системы счисления
Тема Системы счисления
параграф
Номер 3
Название Двоичная и троичная системы счисления
Тема Двоичная система счисления
задача
Номер 05.070

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .