Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Вниз   Решение


Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

ВверхВниз   Решение


В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число R (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше R от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число r (радиус) и т. д., причём R и r не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зачисление в полицию и одновременно не менее 90% населения освобождены от армии? (Каждый человек проживает в определенной точке плоскости.)

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .

ВверхВниз   Решение


Найдите наибольшее значение функции y = 16x-5 sin x+3 на отрезке [-;0] .

ВверхВниз   Решение


Докажите, что если уравнения  x³ + px + q = 0,  x³ + p'x + q' = 0  имеют общий корень, то  (pq' – qp')(p – p')² = (q – q')³.

ВверхВниз   Решение


Докажите, что равенство  4p³ + 27q² = 0  является необходимым и достаточным условием для совпадения по крайней мере двух корней уравнения
x³ + px + q = 0.

ВверхВниз   Решение


Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

ВверхВниз   Решение


Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

ВверхВниз   Решение


Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.

ВверхВниз   Решение


Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?

ВверхВниз   Решение


Автор: Фольклор

На координатной плоскости изображен график функции  y = ax² + c  (см. рисунок). В каких точках график функции  y = cx + a  пересекает оси координат?

ВверхВниз   Решение


а) Докажите, что при  4p³ + 27q² < 0  уравнение  x³ + px + q = 0  заменой  x = αy + β  сводится к уравнению ay³ – 3by² – 3ay + b = 0    (*)
от переменной y.

б) Докажите, что решениями уравнения (*) будут числа   y1 = tg ,   y2 = tg ,   y3 = tg ,   где φ определяется из условий:
sin φ = ,   cos φ = .

Вверх   Решение

Задача 61279
Темы:    [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

а) Докажите, что при  4p³ + 27q² < 0  уравнение  x³ + px + q = 0  заменой  x = αy + β  сводится к уравнению ay³ – 3by² – 3ay + b = 0    (*)
от переменной y.

б) Докажите, что решениями уравнения (*) будут числа   y1 = tg ,   y2 = tg ,   y3 = tg ,   где φ определяется из условий:
sin φ = ,   cos φ = .


Решение

  а) После замены мы получим уравнение  α³y³ + 3α²βy² + α(3β² + p)y + β³ + pβ + q = 0.  Должны выполняться условия  3β² + p = – 3α²  и
α²β = – β³ – pβ – q,  откуда  3β³ + 3pβ + 3q = 3β³ + pβ,  

  б)     В силу формулы     при подстановке в уравнение любого из чисел y1, y2, y3 получаем верное равенство.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 1
Название Уравнения третьей степени
Тема Уравнения высших степеней. Возвратные уравнения
задача
Номер 09.028

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .