ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.
В трапеции ABCD основание AB = a, основание CD = b (a < b). Окружность, проходящая через вершины A, B и C, касается стороны AD. Дано число x, большее 1. Обязательно ли имеет место равенство
[
Докажите, что две непересекающиеся окружности S1 и S2
(или окружность и прямую) можно при помощи
инверсии перевести в пару концентрических окружностей.
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей? Докажите, что при инверсии относительно описанной окружности изодинамические
центры треугольника переходят друг в друга.
Найдите количество перестановок a1, a2, ... , a10 чисел 1,2,...,10, таких, что ai+1 не меньше, чем ai-1 (для i=1,2,...,9). Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Гениальные математики. а) Каждому из двух
гениальных математиков сообщили по натуральному числу, причем им
известно, что эти числа отличаются на единицу. Они поочередно
спрашивают друг друга: "Известно ли тебе мое число?"
Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики
предполагаются правдивыми и бессмертными.)
Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами. Окружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что
ta =
Итерационная формула Герона. Докажите, что последовательность чисел {xn}, заданная условиями
x1 = 1, xn + 1 =
сходится. Найдите предел этой последовательности.
|
Задача 61299
УсловиеИтерационная формула Герона. Докажите, что последовательность чисел {xn}, заданная условиями
x1 = 1, xn + 1 =
сходится. Найдите предел этой последовательности.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке