Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Длины сторон треугольника ABC равны a, b и c  (AB = c,  BC = a,  CA = b  и  a < b < c).  На лучах BC и AC отмечены соответственно такие точки B1 и A1, что  BB1 = AA1 = c.  На лучах CA и BA отмечены соответственно такие точки C2 и B2, что  CC2 = BB2 = a.  Найти  A1B1 : C2B2.

Вниз   Решение


В треугольнике ABC  ∠A = 45°,  BH – высота, точка K лежит на стороне AC, причём  BC = CK.
Докажите, что центр описанной окружности треугольника ABK совпадает с центром вневписанной окружности треугольника BCH.

ВверхВниз   Решение


Найдите ближайшее целое число к числу x, если  x = .

ВверхВниз   Решение


Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

ВверхВниз   Решение


Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.

ВверхВниз   Решение


Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).

ВверхВниз   Решение


Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.

Вверх   Решение

Задача 64408
Темы:    [ Вписанные и описанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4+
Классы:
Из корзины
Прислать комментарий

Условие

Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.


Решение

  Обозначим через R и r радиусы внешней (Ω) и внутренней (ω) окружностей, соответственно, а через D – центр ω (см. рис.). Пусть C' – середина дуги AB окружности Ω, не содержащей точку C, а I – центр вписанной окружности треугольника ABC. Тогда точки I и D лежат на CC', а по лемме о трезубце (см. задачу 53119) C'I = C'A = 2R sin ∠ACC'.

  С другой стороны, если P – точка касания AC с ω, то    кроме того, произведение  d = CD·C'D  – это степень точки D относительно Ω, взятая со знаком минус, то есть оно постоянно. Значит,   откуда  
  Итак, точка I лежит на окружности, полученной из Ω гомотетией с центром D и коэффициентом  .
  Наоборот, для любой точки I этой окружности можно восстановить точки C и C' как точки пересечения ID с Ω; при этом точка C' выбирается как образ I при обратной гомотетии. Для полученной точки C точка I является требуемым центром; значит, каждая точка полученной окружности подходит.

Замечания

Если   2Rr = d,  то полученная окружность вырождается в точку; в этом случае из приведённого решения легко получить формулу Эйлера для расстояния между центрами вписанной и описанной окружностей.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2013
класс
Класс 10
задача
Номер 10.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .