Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что при всех натуральных n выполняется сравнение [(1 + $ \sqrt{2}$)n] $ \equiv$ n(mod 2).

Вниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

ВверхВниз   Решение


Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

ВверхВниз   Решение


Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

Вверх   Решение

Задача 64871
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Две пары подобных треугольников ]
[ Прямая Симсона ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.


Решение 1

Так как  ∠ABK = ∠CBL,  треугольники ABK и CBL подобны. Значит, треугольники ABC и KBL также подобны и  ∠BKF = ∠BAF.  Следовательно, четырёхугольник ABFK – вписанный и  ∠BFK = 90° (см. рис.).


Решение 2

Заметим, что точка B лежит на описанной окружности треугольника KLD. Точки A и C являются основаниями перпендикуляров, опущенных из точки B на прямые KD и DL. А значит, основание перпендикуляра, опущенного из точки B на прямую KL, согласно задаче 52421 лежит на прямой Симсона AC, то есть совпадает с точкой F, что и требовалось доказать.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2014
тур
задача
Номер 8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .