ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите неравенство В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.
Что больше 200! или 100200? В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны. На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A. Числа а, b и с лежат в интервале (0, 1). Докажите, что a + b + c + 2abc > ab + bc + ca + 2
Упростите выражения:
Дано 1993 числа. Известно, что сумма любых четырёх чисел положительна. Верно ли, что сумма всех чисел положительна? Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей. Через данную точку проведите окружность, касающуюся данной прямой и данной окружности. Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9. В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF. |
Задача 64980
УсловиеВ угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF. Решение 1Пусть одна сторона угла касается ω и Ω в точках X1, Y1, а другая – в точках X2, Y2; U, V – точки пересечения X1X2 и Y1Y2 с AF. Середина отрезка CD лежит на радикальной оси окружностей, то есть на средней линии трапеции X1Y1Y2X2, поэтому BU = EV и CU = DV (см. рис.). Следовательно, X1U·X2U = Y1V·Y2V. Отсюда FY2 : FX2 = Y2V : X2U = X1U : Y1V = AX1 : AY1, то есть AX1 = FY2. Теперь утверждение задачи вытекает из равенств AB·AC = X1A² + Y2F² = FE·FD. Решение 2Зафиксируем точку A на стороне угла и покажем, что через нее проходит ровно одна прямая, удовлетворяющая условиям задачи. Действительно, середина K отрезка CD равноудалена от проекций центров окружностей на искомую прямую и, значит, совпадает с проекцией середины L отрезка между центрами. Следовательно, K – точка пересечения окружности с диаметром AL и радикальной оси окружностей ω и Ω, отличная от середины отрезка X1Y1. С другой стороны, если взять точку F так, что AX1 = Y2F, то AB·AC = FE·FD и AD·AE = FC·FB, откуда следует, что прямая AF – искомая. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке