Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.

Вниз   Решение


Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

ВверхВниз   Решение


Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

ВверхВниз   Решение


Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

ВверхВниз   Решение


У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?

ВверхВниз   Решение


Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.

ВверхВниз   Решение


Докажите, что при любом нечётном n число  2n! – 1  делится на n.

ВверхВниз   Решение


Дан треугольник ABC и прямая l. Прямые, симметричные l относительно AB и AC пересекаются в точке A1. Точки B1, C1 определяются аналогично. Докажите, что
  а) прямые AA1, BB1, CC1 пересекаются в одной точке;
  б) эта точка лежит на описанной окружности треугольника ABC ;
  в) точки, построенные указанным способом для двух перпендикулярных прямых, диаметрально противоположны.

Вверх   Решение

Задача 65042
Темы:    [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Дан треугольник ABC и прямая l. Прямые, симметричные l относительно AB и AC пересекаются в точке A1. Точки B1, C1 определяются аналогично. Докажите, что
  а) прямые AA1, BB1, CC1 пересекаются в одной точке;
  б) эта точка лежит на описанной окружности треугольника ABC ;
  в) точки, построенные указанным способом для двух перпендикулярных прямых, диаметрально противоположны.


Решение

  Заметим, что, когда прямая l движется параллельно себе с постоянной скоростью, прямые, симметричные l относительно AC и BC, также перемещаются параллельно себе с постоянной скоростью. Поэтому точка C1 движется по прямой, проходящей через C, то есть точка пересечения CC1 с описанной окружностью зависит только от направления прямой l. Пусть теперь A', B' – точки пересечения l с BC и AC (см. рис.). Тогда B'C – биссектриса одного из углов между прямыми B'C1 и B'A', а A'C – биссектриса одного из углов между прямыми A'C1 и A'B'. Значит, C – центр вписанной или вневписанной окружности треугольника A'B'C1, то есть C1C – биссектриса угла A'C1B' или смежного с ним. Но угол между прямыми A'C1 и B'C1 не зависит от l, значит, не зависит от l и угол между CC1 и C1A'. Поэтому при вращении l с постоянной скоростью прямые AA1, BB1, CC1 вращаются с той же скоростью, откуда следуют все три утверждения задачи.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
тур
задача
Номер 16

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .