Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Юран А.Ю.

Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера.

Вниз   Решение


Автор: Юран А.Ю.

Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.

ВверхВниз   Решение


Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.

ВверхВниз   Решение


а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле

S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),

где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то  S2 = (p - a)(p - b)(p - c)(p - d ).
в) Докажите, что если четырехугольник ABCD описанный, то  S2 = abcd sin2((B + D)/2).

ВверхВниз   Решение


Продолжения сторон AD и BC выпуклого четырехугольника ABCD пересекаются в точке OM и N — середины сторон AB и CDP и Q — середины диагоналей AC и BD. Докажите, что:
а)  SPMQN = | SABD - SACD|/2;
б)  SOPQ = SABCD/4.

ВверхВниз   Решение


Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая ломаная без самопересечений. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченной ею части доски общая площадь чёрных кусков равна общей площади белых кусков.

ВверхВниз   Решение


Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

Вверх   Решение

Задача 65119
Темы:    [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.


Решение

  Если какое-то из чисел xi равно 0, утверждение очевидно. Если одно из xi равно ±1, то  a = 0,  и утверждение также верно. В противном случае каждое произведение отрицательно. Поэтому  a² = (1 + x1)(1 + x2)...(1 + x13)(1 – x1)(1 – x2)...(1 – x13)  – отрицательное число (как произведение 13 отрицательных чисел). Противоречие.

Замечания

Из условия не следует, что  a = 0  (даже в случае, если не все xi – нули). Более того, неверно, что при  a ≠ 0  все ненулевые xi разбиваются на пары противоположных. Например,  (1 – 3)(1 + 7)(1 + 8)(1 + 11)·1·1·1·1·1·1·1 = (1 + 3)(1 – 7)(1 – 9)(1 – 11)·1·1·1·1·1·1·1 = –1920.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2014/2015
этап
Вариант 4
класс
Класс 10
задача
Номер 10.1
олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2014/2015
этап
Вариант 4
класс
Класс 11
задача
Номер 11.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .