ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
На отрезке AC взята точка B и на отрезках AB,
BC, CA построены полуокружности S1, S2, S3 по одну сторону
от AC. D — такая точка на S3, что
BD На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки? На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков? |
Задача 65715
УсловиеПо кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков? РешениеРасположения МХД (по часовой стрелке) быть не может из-за цвета футболки ребёнка Х. Поэтому через одного от мальчика по часовой стрелке должен стоять мальчик, через одного от него – снова мальчик, и т.д. Значит, мальчиков не меньше половины всех детей в круге. По аналогичным соображениям девочек тоже не меньше половины. Следовательно, мальчиков и девочек по 10. ОтветМожно. Замечания3 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке