Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Попов Л. А.

Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.

Вниз   Решение


Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

ВверхВниз   Решение


В прямоугольной трапеции PQRS ( QR || PS, PQ $ \perp$ PS) меньшее основание QR равно 2, а боковая сторона RS равна 4. Точка T, середина стороны RS, соединена отрезком прямой с точкой P. Известно, что угол TPS равен $ \beta$. Найдите площадь трапеции PQRS.

ВверхВниз   Решение


Автор: Соколов А.

Дан остроугольный треугольник ABC. Точки H и O – его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к отрезку BH пересекает стороны AB и BC в точках A1 и C1. Докажите, что OB – биссектриса угла A1OC1.

ВверхВниз   Решение


Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).

ВверхВниз   Решение


На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).

ВверхВниз   Решение


Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

Вверх   Решение

Задача 66384
Темы:    [ Разрезания (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)


Ответ

Да, существует, см. рисунок.

Комментарии. 1. Следить за тем, разрезается ли фигура на фигурки 5 разных видов, тяжело. Но можно заметить, что из двух квадратов можно сложить прямоугольник 2 × 4, который разрезается и на квадраты, и на полоски, и на L-тетраминошки. А из двух Z-тетраминошек легко сложить "параллелограмм", который разрезается также и на T-тетраминошки. Чтобы решить задачу, остаётся придумать фигуру, которую можно составить как из прямоугольников 2 × 4, так и из таких параллелограммов.

2. В примере выше фигура не является многоугольником, в ней есть дырка. Существуют ли фигуры с требуемым свойством без дырок, жюри неизвестно.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2018
класс
Класс 7
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .