Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Найдите  (xn – 1, xm – 1).

Вниз   Решение


Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

ВверхВниз   Решение


Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины?

ВверхВниз   Решение


Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

ВверхВниз   Решение


Пусть  (P(x), Q(x)) = D(x).
Докажите, что существуют такие многочлены U(x) и V(x), что  degU (x) < deg Q(x),  deg V(x) < deg P(x)  и   P(x)U(x) + Q(x)V(x) = D(x).

ВверхВниз   Решение


Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

ВверхВниз   Решение


Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

Вверх   Решение

Задача 66723
Темы:    [ Теория чисел. Делимость (прочее) ]
[ Ребусы ]
Сложность: 4-
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?


Решение 1

   $\underbrace{7\ldots 7}_{n} = \dfrac{10^n-1}{9}\cdot 7 = \dfrac{7\cdot 10^n -7}{9}.$   Число 10 можно записать как  (77 - 7):7,  а 9 – как  7 + (7 + 7):7.  В качестве $n$ можно взять 77 или  14 = 7 + 7.

Замечание. В этом решении использовано 12 семёрок. Заменив $(77 - 7):7$ на $7 + (7 + 7 + 7):7$ можно обойтись без использования двузначных чисел.

Решение 2

(Будун Будунов)    $\underbrace{7\ldots 7}_{14}\cdot\left(\left(\dfrac{77-7}{7}\right)^{7+7}+\dfrac{7}{7}\right) = \underbrace{7\ldots 7}_{28}.$


Ответ

Существует.

Замечания

8 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Дата 2018/19
Номер 40
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .