Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Вниз   Решение


Площадь основания пирамиды равна s . Через середину высоты пирамиды проведена плоскость, параллельная плоскости основания. Найдите площадь полученного сечения.

ВверхВниз   Решение


Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

ВверхВниз   Решение


Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

ВверхВниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


В параллелограмме ABCD большая сторона AD равна 5. Биссектрисы углов A и B пересекаются в точке M. Найдите площадь параллелограмма, если BM = 2, а cos$ \angle$BAM = $ {\frac{4}{5}}$.

ВверхВниз   Решение


Ребро BD пирамиды ABCD перпендикулярно плоскости ADC . Докажите, что сечением этой пирамиды плоскостью, проходящей через точку D и середины рёбер AB и BC , является треугольник, подобный треугольнику ABC . Чему равен коэффициент подобия?

ВверхВниз   Решение


Вавилонский алгоритм вычисления $ \sqrt{2}$. Последовательность чисел {xn} задана условиями:

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$xn + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (n $\displaystyle \geqslant$ 1).

Докажите, что $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{2}$.

ВверхВниз   Решение


Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.

Вверх   Решение

Задача 66922
Темы:    [ Ломаные ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.

Решение

Пусть $O$ – центр окружности, а $T_i$ – точка ее касания с прямой $A_iA_{i + 1}$ (считаем, что $A_{n +1}$ совпадает с $A_1$.) Назовем треугольник $ABC$ положительно ориентированным, если вершины $A$, $B$, $C$ идут против часовой стрелки, и отрицательно ориентированным в противном случае.

Заметим, что треугольники $OA_iT_i$ и $OA_{i + 1}T_i$ ориентированы одинаково тогда и только тогда, когда звено $A_iA_{i + 1}$ плохое. С другой стороны, треугольники $OA_{i + 1}T_i$ и $OA_{i + 1}T_{i + 1}$ всегда ориентированы по-разному. Следовательно, звено $A_iA_{i + 1}$ плохое тогда и только тогда, когда треугольники $OA_iT_i$ и $OA_{i + 1}T_{i + 1}$ ориентированы по-разному. Значит, число плохих звеньев равно числу перемен ориентации в последовательности треугольников $OA_1T_1, OA_2T_2, \ldots, OA_nT_n$, которое, очевидно, четно.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2020
Заочный тур
задача
Номер 10 [8-9 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .