Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

Вниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Найдите наименьшую величину выражения   + + ... + .

ВверхВниз   Решение


Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.

ВверхВниз   Решение


На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точки $O$, $I$ – центры описанной и вписанной окружностей, $P$ – произвольная точка на отрезке $OI$, точки $P_A$, $P_B$ и $P_C$ – вторые точки пересечения прямых $PA$, $PB$ и $PC$ с окружностью $ABC$. Докажите. что биссектрисы углов $BP_AC$, $CP_BA$ и $AP_CB$ пересекаются в одной точке, лежащей на прямой $OI$.

Вверх   Решение

Задача 67131
Темы:    [ Вписанные и описанные окружности ]
[ Проективная геометрия (прочее) ]
Сложность: 5
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

В остроугольном треугольнике $ABC$ точки $O$, $I$ – центры описанной и вписанной окружностей, $P$ – произвольная точка на отрезке $OI$, точки $P_A$, $P_B$ и $P_C$ – вторые точки пересечения прямых $PA$, $PB$ и $PC$ с окружностью $ABC$. Докажите. что биссектрисы углов $BP_AC$, $CP_BA$ и $AP_CB$ пересекаются в одной точке, лежащей на прямой $OI$.

Решение

Заметим, что для любой точки $P$ биссектриса угла $BP_AC$ вторично пересекает описанную окружность в фиксированной точке – середине дуги $BAC$. Поэтому точка пересечения биссектрисы с прямой $OI$ проективно зависит от $P$. Это же верно для точек пересечения $OI$ с биссектрисами углов $CP_BA$ и $AP_CB$. При этом, когда $P$ совпадает с $I$, все три биссектрисы проходят через $O$, а когда $P$ является одной из точек пересечения прямой $OI$ с окружностью, биссектрисы пересекают $OI$ в той же точке. Значит, для любого положения точки $P$ все биссектрисы пересекают $OI$ в одной и той же точке.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2022
класс
Класс 10
задача
Номер 10.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .