ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой? На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна? |
Задача 73537
УсловиеДана сфера РешениеКаждой окружности на сфере можно сопоставить ее "центр на сфере"– конец
радиуса сферы, проходящего через центр окружности (никогда не лежащий на сфере).
Эту точку мы будем называть "центром" окружности в кавычках, подчеркивающих,
что это не "обычный" центр (рис. 1 а ). Пусть A0, A1, A2, ..., An – "центры" окружностей γ0, γ1, ...,γn , окоторых идет речь в условии задачи. Тогда A0 A1=A0 A2=...=A0 An=A1 A2=A2 A3=...=An A1 2r , другими словами, A0 A1 A2 ... An – вписанная в данную сферу радиуса 1 правильная n-угольная пирамида с вершиной A0 , у которой все боковые грани – равносторонние треугольники со сторонами, равными 2r. Итак, достаточно построить пирамиду, для которой выполнены эти условия, тогда точки A0 , A1 , ... , An будут определять окружности радиуса r с "центрами" A0 , A1 , ... , An , которые, очевидно, удовлетворяют условию задачи. Поскольку сумма плоских углов выпуклого n-гранного угла с вершиной A0 меньше 360°:
Ответn=3, 4 и 5.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке