ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC. На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы. Дано n целых чисел a1 = 1, a2, a3, ..., an, причём ai ≤ ai+1 ≤ 2ai (i = 1, 2,..., n – 1) и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны? Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке. Числа 1, 2, ..., k² расположены в квадратную таблицу На плоскости P стоит прямой круговой конус. Радиус основания r, высота — h. На расстоянии H от плоскости и l от высоты конуса находится источник света. Какую часть окружности радиуса R, лежащей в плоскости P и концентрической с окружностью, лежащей в основании конуса, осветит этот источник? В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший. Как надо расположить числа 1, 2, ..., 2n в последовательности a1, a2, ..., a2n, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a2n–1 – a2n| + |a2n – a1| была наибольшей? Как надо расположить числа 1, 2, ..., 1962 в последовательности a1, a2, ..., a1962, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a1961 – a1962| + |a1962 – a1| была наибольшей? Треугольник, составленный: а) из медиан; б) из высот треугольника ABC, подобен треугольнику ABC. Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.) Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°. Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n. |
Задача 78059
УсловиеДан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n. РешениеТо, что треугольник ABC содержится в треугольнике A1B1C1, очевидно. Покажем, что точки A2, B2, C2 являются точками пересечения сторон треугольника A1B1C1 с прямыми A0A1, B0B1, C0C1. Поместим в точки A0, B0, C0 массы 1 + k3, k, k2. Центром масс этой системы является точка пересечения отрезков A0A1 и B1C1. Действительно, C1 — центр масс точек A0 и B0 с массами 1 и k, B1 — центр масс точек A0 и C0 с массами k3 и k2, A1 — центр масс точек B0 и C0 с массами k и k2. Таким образом, если A' — точка пересечения отрезков A0A1 и B1C1, то B1A' : A'C1 = (1 + k) : (k2 + k3) = 1 : k2, поэтому A' = A2. Для точек B2 и C2 доказательство аналогично. Доказанный результат означает следующее. Для треугольника A1B1C1 мы делаем то же самое, что и для треугольника A0B0C0, лишь с заменой коэффициента k на 1/k2; треугольник ABC при этом остаётся тем же самым. Полученный треугольник A2B2C2 снова содержит треугольник ABC и т.д. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке