ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом многоугольнике на плоскости содержится не меньше m² + 1 точек с целыми координатами. Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что S(3n) ≥ S(3n+1). Можно ли доску размером 5×5 заполнить доминошками размером 1×2? Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S. Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом шагу разрешается одновременно изменить знак у любых 11 чисел первого набора. (Два набора считаются одинаковыми, если у них на одинаковых местах стоят одинаковые числа.) На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки n – 1 цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа. Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB. Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что |
Задача 78127
УсловиеТочка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что РешениеОпустим из точки O перпендикуляры OA1, OB1, OC1 и OD1 на грани. Из точки G тоже опустим перпендикуляры GA2, GB2, GC2 и GD2 на грани. Ясно, что
a(OA1 + OB1 + OC1) = 3V.
Поэтому сумма
OA1 + OB1 + OC1 + OD1 одна и
та же для всех точек O внутри тетраэдра ABCD. Но если O совпадает с
G, то эта сумма равна 4x.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке