Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если  ∠A = 45°,  то B1C1 – диаметр окружности девяти точек треугольника ABC.

Вниз   Решение


На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.

ВверхВниз   Решение


Дано n целых чисел  a1 = 1,  a2, a3, ..., an, причём   ai ≤ ai+1 ≤ 2ai  (i = 1, 2,..., n – 1)  и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны?

ВверхВниз   Решение


Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Числа 1, 2, ..., k² расположены в квадратную таблицу

Произвольное число выписывается, после чего из таблицы вычеркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей из  (k – 1)²  чисел и т.д. k раз. Найти сумму выписанных чисел.

ВверхВниз   Решение


На плоскости P стоит прямой круговой конус. Радиус основания r, высота — h. На расстоянии H от плоскости и l от высоты конуса находится источник света. Какую часть окружности радиуса R, лежащей в плоскости P и концентрической с окружностью, лежащей в основании конуса, осветит этот источник?

ВверхВниз   Решение


В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.
Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

ВверхВниз   Решение


Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

ВверхВниз   Решение


Как надо расположить числа 1, 2, ..., 1962 в последовательности a1, a2, ..., a1962, чтобы сумма  |a1a2| + |a2a3| + ... + |a1961a1962| + |a1962a1|  была наибольшей?

ВверхВниз   Решение


Треугольник, составленный:  а) из медиан;  б) из высот треугольника ABC, подобен треугольнику ABC.
Каким соотношением связаны длины сторон треугольника ABC?

ВверхВниз   Решение


Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

Вверх   Решение

Задача 78163
Тема:    [ Теория графов (прочее) ]
Сложность: 4+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)


Решение

  Оценка. Рассмотрим граф, вершинами которого являются зажимы, а рёбрами – сопротивления. Заметим, что между вершинами A и B не может быть пути, состоящего менее чем из девяти рёбер (иначе при коротком замыкании всех рёбер этого пути у нас получалось бы короткое замыкание цепи). Кроме того, для любых девяти рёбер существует путь из A в B, не проходящий через эти рёбра. Следовательно, по теореме Менгера, существует не менее 10 попарно не пересекающихся (по рёбрам) путей из A в B. Так как в каждом из этих путей не менее 10 рёбер, то всего рёбер не менее 100.
  Пример цепи со 100 сопротивлениями – это 10 попарно непересекающихся путей длины 10 из вершины A в вершину B.


Ответ

100 сопротивлений.

Замечания

  Теорема Менгера. Если в графе G c двумя отмеченными вершинами A и B для любых k рёбер существует путь из A в B, не проходящий ни по одному из этих рёбер, то существует набор из  k + 1  попарно непересекающихся (по рёбрам) путей из A в B.
  Доказательство см., например, здесь.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 9
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .