ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа. При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет
среди присутствующих не более n – 1 врага. Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна? На кафтане площадью 1 размещены Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности. Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника. Мальвина всю неделю учила Буратино писать. Она изобразила на диаграмме, сколько букв написал Буратино за каждый из семи дней. Черта на диаграмме показывает среднее число букв (оно равно 9). Буратино оторвал кусок диаграммы, как показано на рисунке. Сколько букв он написал в воскресенье? Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов. |
Задача 78740
Условие
Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать,
что из этих гирь нельзя составить более 1230 различных по массе наборов.
РешениеРазобьём все наборы на две части: те, в которых не более семнадцати гирь и все остальные. Масса каждого набора из первой части не превосходит 17 . 70 = 1190, а значит, среди них не более 1190 различных по массе. С другой стороны, количество наборов во второй части равно 19 + 1 = 20. Следовательно, всего из данных гирь можно составить не более, чем 1190 + 20 = 1210 < 1230 различных по массе наборов. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке