Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

Вниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Разложить на целые рациональные множители выражение  a10 + a5 + 1.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

ВверхВниз   Решение


Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

Вверх   Решение

Задача 86496
Тема:    [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Решите неравенство:
|x + 2000| < |x - 2001|.

Решение

Решим неравенство, используя координатную прямую. Данное неравенство выполняется для всех точек c координатой x, которые находятся ближе к точке с координатой -2000, чем к точке с координатой 2001. Так как $ {\frac{-2000+2001}{2}}$ = 0, 5, то искомыми являются все точки, расположенные левее точки с координатой 0, 5 (см. рис.).

Возможны другие способы решения, в частности, раскрытие модулей (три случая); возведение обеих частей неравенства в квадрат.


Ответ

(- $ \infty$;0, 5).

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2000/01
класс
Класс 8
задача
Номер 1.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .