ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку. На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует). Разложить на целые рациональные множители выражение a10 + a5 + 1. На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан? Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE. Докажите, что середины сторон правильного многоугольника образуют
правильный многоугольник.
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
Решите неравенство:
|
Задача 86496
Условие
Решите неравенство:
РешениеРешим неравенство, используя координатную прямую. Данное неравенство выполняется для всех точек c координатой x, которые находятся ближе к точке с координатой -2000, чем к точке с координатой 2001. Так как
Возможны другие способы решения, в частности, раскрытие модулей (три случая); возведение обеих частей неравенства в квадрат.
Ответ
(- Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке