ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево. Пусть x1, x2,..., xn – корни уравнения anxn + ... + a1x + a0 = 0. Какие корни будут у уравнений Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных. Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. Две окружности с центрами O1 и O2 пересекаются
в точках A и B. Через точку A проведена прямая, пересекающая
первую окружность в точке M1, а вторую в точке M2.
Докажите, что
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.
С помощью циркуля и линейки постройте треугольник по двум сторонам и высоте, опущенной на третью.
На плоскости нарисовано несколько попарно непараллельных прямых, по каждой из которых в одном из двух направлений ползет жук со скоростью 1 сантиметр в секунду. Докажите, что в какой-то момент жуки окажутся в вершинах выпуклого многоугольника. |
Задача 88301
УсловиеКуб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд? РешениеПолучим 100 × 100 × 100 = 1000000 (см) или 10000 м = 10 км. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке