Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

Вниз   Решение


На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

ВверхВниз   Решение


а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

ВверхВниз   Решение


Художник-авангардист нарисовал картину "Контур квадрата и его диагонали".
Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя одну линию дважды?

ВверхВниз   Решение


Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

Вверх   Решение

Задача 98159
Темы:    [ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?


Решение

Согласно решению задачи 98152 все полные квадраты в этой последовательности имеют вид 4m. Чисел такого вида в указанных пределах ровно 10
(410 = 1024² > 106).

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1992/1993
Номер 14
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .