ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным? Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет Расстояние между Атосом и Арамисом, скачущими по одной дороге, равно 20 лье. За час Атос покрывает 4 лье, а Арамис – 5 лье. Я иду от дома до школы 30 минут, а мой брат – 40 минут. Через сколько минут я догоню брата, если он вышел из дома на 5 минут раньше меня? Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км. Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник. Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным. а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться? б) Тот же вопрос для решётки 7×7 (всего 64 узла). |
Задача 98603
Условиеа) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться? б) Тот же вопрос для решётки 7×7 (всего 64 узла). Решениеа) См. задачу 98596 а). б) То, что 31 измерения недостаточно доказано в решении задачи 98596. На первом шаге все проверенные узлы принадлежат одной компоненте благодаря теореме о пересечении ломаных. На следующих трёх шагах линия тока обязана пройти через один из узлов, принадлежащих компоненте, поскольку один из проверяемых узлов оказывается окруженным ранее проверенными узлами. Второй способ. "Линия тока" A–A соединяет боковые стороны решётки и по теореме о пересечении ломаных пересекается с линиями B–B, C–C, ..., H–H. Таким образом, все узлы, помеченные буквами от A до H, принадлежат одной компоненте. Ответа) За 8 измерений; б) за 32 измерения. Замечания1. Первый способ, по-видимому, переносится на любую квадратную схему, но это неочевидно. К тому же с увеличением размеров растёт и число шагов. Второй способ идейно сложнее, зато свободен от этих недостатков. 2. Баллы: 4 + 5. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке