ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мавло Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 64968

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Симметрия помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9,10

Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .