Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 21 задача
Версия для печати
Убрать все задачи

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.

Вниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

ВверхВниз   Решение


Найдите все натуральные числа, не представимые в виде разности квадратов каких-либо натуральных чисел.

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.

ВверхВниз   Решение


Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

ВверхВниз   Решение


На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

ВверхВниз   Решение


Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.

ВверхВниз   Решение


Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.

ВверхВниз   Решение


Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.

ВверхВниз   Решение


Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

ВверхВниз   Решение


В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC со сторонами  AB = 4,  AC = 6  проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

ВверхВниз   Решение


В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

ВверхВниз   Решение


Существует ли выпуклый семиугольник, который можно разрезать на 2011 равных треугольников?

ВверхВниз   Решение


Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?

Вверх   Решение

Задача 98387
Темы:    [ Геометрия на клетчатой бумаге ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4-
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?


Решение

  Пример с 16 диагоналями см. на рисунке.

  Оценка. Предположим, что удалось провести 17 диагоналей. Приведём два способа прийти к противоречию.

  Первый способ. Каждая диагональ имеет два конца, расположенных в узлах квадратной сетки. Всего таких узлов в квадрате 36. 12 из них расположены на границе внутреннего квадрата 3×3 (рис. слева), поэтому диагоналей с концами в этих узлах проведено не больше 12. Оставшиеся пять диагоналей могут располагаться только в центральной и четырёх угловых клетках. Значит, четыре узла, расположенные в вершинах квадрата, не являются концами проведённых диагоналей, то есть 17 диагоналей имеют не более  36 – 4 = 32  концов. Противоречие.

  Второй способ. В каждом прямоугольнике 5×2 проведено не больше 6 диагоналей: на его средней линии всего шесть узлов, а каждая диагональ имеет один из них своим концом. Значит, во всех горизонталях квадрата, кроме средней, проведено в сумме не более 12 диагоналей. Поэтому в средней горизонтали их не меньше, чем  17 – 12 = 5,  то есть в каждой её клетке проведена диагональ.
  Аналогично доказывается, что диагонали проведены во всех клетках средней вертикали. Но диагонали, проведённые в соседних (имеющих общую сторону) клетках, параллельны. Значит, весь "центральный крест" заполнен параллельными диагоналями. Но тогда диагонали в двух соседних с центром клетках имеют общую точку (см. рис. справа). Противоречие.


Ответ

16 диагоналей.

Замечания

7 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .