ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 118]      



Задача 65091

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
PC = 2PN.  Докажите, что  АР = ВС.

Прислать комментарий     Решение

Задача 65121

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезкуAL пересекает описанную окружность Ω треугольника ABC, в точках P и Q. Докажите, что описанная окружность треугольника PLQ, касается стороны BC.

Прислать комментарий     Решение

Задача 65243

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Дан параллелограмм ABCD, в котором  AB < AC < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что  ∠ABF = ∠DCE.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 108125

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что  KL || O1O2.

Прислать комментарий     Решение

Задача 108141

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10

На большей стороне AC треугольника ABC взята точка N так, что серединные перпендикуляры к отрезкам AN и NC пересекают стороны AB и BC в точках K и M соответственно. Докажите, что центр O описанной окружности треугольника ABC лежит на описанной окружности треугольника KBM.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .