ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 118]      



Задача 65398

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Параллелограмм Вариньона ]
[ Свойства сечений ]
[ Центр масс ]
Сложность: 4
Классы: 10,11

У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.

Прислать комментарий     Решение

Задача 65744

Темы:   [ Замощения костями домино и плитками ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Прислать комментарий     Решение

Задача 65746

Темы:   [ Разрезания на параллелограммы ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 8,9,10

Квадрат разбит на  n² ≥ 4  прямоугольников  2(n – 1)  прямыми, из которых  n – 1  параллельны одной стороне квадрата, а остальные  n – 1  – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).

Прислать комментарий     Решение

Задача 66968

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9,10,11

Существует ли выпуклый многоугольник, у которого длины всех сторон равны, а любые три вершины образуют тупоугольный треугольник?
Прислать комментарий     Решение


Задача 108126

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки подобия ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Пусть описанные окружности S1 и S2 треугольников ABO и CDO второй раз пересекаются в точке K. Прямые, проходящие через точку O параллельно прямым AB и CD, вторично пересекают S1 и S2 в точках L и M соответственно. На отрезках OL и OM выбраны соответственно точки P и Q, причём  OP : PL = MQ : QO.  Докажите, что точки O, K, P, Q лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .