ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 118]      



Задача 64633

Темы:   [ Числовые таблицы и их свойства ]
[ Теория графов (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 10,11

Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.

Прислать комментарий     Решение

Задача 65238

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В волейбольном турнире участвовали 110 команд, каждая сыграла с каждой из остальных ровно одну игру (в волейболе не бывает ничьих). Оказалось, что в любой группе из 55 команд найдётся одна, которая проиграла не более чем четырём из остальных 54 команд этой группы. Докажите, что во всём турнире найдётся команда, проигравшая не более чем четырём из остальных 109 команд.

Прислать комментарий     Решение

Задача 108136

Темы:   [ Поворот помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Вспомогательные равные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9

Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём  2∠MON = ∠AOC.  Докажите, что периметр треугольника MBN не меньше стороны AC.

Прислать комментарий     Решение

Задача 108201

Темы:   [ Пятиугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Принцип Дирихле (углы и длины) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 7,8,9,10

В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Прислать комментарий     Решение

Задача 108217

Темы:   [ Поворотная гомотетия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .