ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два тетраэдра. Ни у одного из них нет двух подобных граней, но каждая грань первого тетраэдра подобна какой-то грани второго. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 177]
Даны два тетраэдра. Ни у одного из них нет двух подобных граней, но каждая грань первого тетраэдра подобна какой-то грани второго.
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.
Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.
Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой a + 99b = c, нашлись два числа из одного подмножества.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 177]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке