|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите равенства (см. треугольник Лейбница, задача 60424): а) 1 = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... ; б) 1/2 = 1/3 + 1/12 + 1/30 + 1/60 + 1/105 + ... ; в) 1/3 = 1/4 + 1/20 + 1/60 + 1/140 + 1/280 + ... . |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 194]
Вася отвечает теорему Виета: "Сумма трёх коэффициентов квадратного трёхчлена равна одному из его корней, а произведение – другому".
При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 194] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|